
Security Audit Report for ETH2 NFT
Validator Smart Contracts

Date: Nov 19, 2022

Version: 1.0

Contact: contact@blocksec.com

mailto:contact@blocksec.com

Contents

1 Introduction 1
1.1 About Target Contracts . 1

1.2 Disclaimer . 1

1.3 Procedure of Auditing . 2

1.3.1 Software Security . 2

1.3.2 DeFi Security . 2

1.3.3 NFT Security . 3

1.3.4 Additional Recommendation . 3

1.4 Security Model . 3

2 Findings 4
2.1 Software Security . 4

2.1.1 Potential access control problem . 4

2.2 Additional Recommendation . 5

2.2.1 Remove unnecessary check . 5

2.2.2 Check the validity for important variables . 5

2.3 Note . 7

2.3.1 The minted NFT tokens are not burnt for users’ withdrawal 7

i

Report Manifest

Item Description
Client Stakefish
Target ETH2 NFT Validator Smart Contracts

Version History

Version Date Description
1.0 Nov 19, 2022 First Release

About BlockSec BlockSec focuses on the security of the blockchain ecosystem and collaborates with

leading DeFi projects to secure their products. BlockSec is founded by top-notch security researchers and

experienced experts from both academia and industry. They have published multiple blockchain security

papers in prestigious conferences, reported several zero-day attacks of DeFi applications, and successfully

protected digital assets that are worth more than 5 million dollars by blocking multiple attacks. They can

be reached at Email, Twitter and Medium.

ii

https://www.blocksec.com
mailto:contact@blocksec.com
https://twitter.com/BlockSecTeam
https://blocksecteam.medium.com/

Chapter 1 Introduction

1.1 About Target Contracts

Information Description
Type Smart Contract
Language Solidity
Approach Semi-automatic and manual verification

The audit target is the eth2-nft-validator-contract project 1 of Stakefish, while those test-purpose files

(e.g., under the contracts/test directory) are out of the audit scope.

This project aims to provide an Ethereum staking flow that issues NFTs as staking receipts and proof

of validator ownership. Specifically, a user can first deposit (stake) 32 ETH and get a minted NFT token

as the receipt. After that, the user will become a validator after the operator confirms this deposit and

updates the status accordingly. The user can also request to exit after becoming a validator. Note that

the deposited ETH can be withdrawn before the operator confirms the deposit. However, like the staking

withdrawals of Eth2 2, the confirmed deposit cannot be withdrawn at the current stage as it has been

transferred to the deposit contract.

The auditing process is iterative. Specifically, we would audit the commits that fix the discovered

issues. If there are new issues, we will continue this process. The commit SHA values during the audit are

shown in the following table. Our audit report is responsible for the code in the initial version (Version 1),

as well as new code (in the following versions) to fix issues in the audit report.

Project Version Commit Hash

eth2-nft-validator-contract
Version 1

d87cb3104782a3de40434525d5acfc1c4faf9693

(tag v.0.4.3)
Version 2 50ac8fe5933fc7312458989f72a50fcd68b9c3f1

1.2 Disclaimer

This audit report does not constitute investment advice or a personal recommendation. It does not

consider, and should not be interpreted as considering or having any bearing on, the potential economics

of a token, token sale or any other product, service or other asset. Any entity should not rely on this report

in any way, including for the purpose of making any decisions to buy or sell any token, product, service or

other asset.

This audit report is not an endorsement of any particular project or team, and the report does not

guarantee the security of any particular project. This audit does not give any warranties on discovering

all security issues of the smart contracts, i.e., the evaluation result does not guarantee the nonexistence

of any further findings of security issues. As one audit cannot be considered comprehensive, we always

1https://github.com/stakefish/eth2-nft-validator-contract

2https://ethereum.org/en/upgrades/merge/

1

https://github.com/stakefish/eth2-nft-validator-contract
https://ethereum.org/en/upgrades/merge/

recommend proceeding with independent audits and a public bug bounty program to ensure the security

of smart contracts.

The scope of this audit is limited to the code mentioned in Section 1.1. Unless explicitly specified,

the security of the language itself (e.g., the solidity language), the underlying compiling toolchain and the

computing infrastructure are out of the scope.

1.3 Procedure of Auditing

We perform the audit according to the following procedure.

- Vulnerability Detection We first scan smart contracts with automatic code analyzers, and then

manually verify (reject or confirm) the issues reported by them.

- Semantic Analysis We study the business logic of smart contracts and conduct further investiga-

tion on the possible vulnerabilities using an automatic fuzzing tool (developed by our research team).

We also manually analyze possible attack scenarios with independent auditors to cross-check the

result.

- Recommendation We provide some useful advice to developers from the perspective of good

programming practice, including gas optimization, code style, and etc.

We show the main concrete checkpoints in the following.

1.3.1 Software Security

∗ Reentrancy

∗ DoS

∗ Access control

∗ Data handling and data flow

∗ Exception handling

∗ Untrusted external call and control flow

∗ Initialization consistency

∗ Events operation

∗ Error-prone randomness

∗ Improper use of the proxy system

1.3.2 DeFi Security

∗ Semantic consistency

∗ Functionality consistency

∗ Permission management

∗ Business logic

∗ Token operation

∗ Emergency mechanism

∗ Oracle security

∗ Whitelist and blacklist

∗ Economic impact

∗ Batch transfer

2

1.3.3 NFT Security

∗ Duplicated item

∗ Verification of the token receiver

∗ Off-chain metadata security

1.3.4 Additional Recommendation

∗ Gas optimization

∗ Code quality and style�
Note The previous checkpoints are the main ones. We may use more checkpoints during the auditing

process according to the functionality of the project.

1.4 Security Model

To evaluate the risk, we follow the standards or suggestions that are widely adopted by both industry

and academy, including OWASP Risk Rating Methodology 3 and Common Weakness Enumeration 4.

The overall severity of the risk is determined by likelihood and impact. Specifically, likelihood is used to

estimate how likely a particular vulnerability can be uncovered and exploited by an attacker, while impact

is used to measure the consequences of a successful exploit.

In this report, both likelihood and impact are categorized into two ratings, i.e., high and low respec-

tively, and their combinations are shown in Table 1.1.

Table 1.1: Vulnerability Severity Classification

Im
pa

ct

High High Medium

Low Medium Low

High Low

Likelihood

Accordingly, the severity measured in this report are classified into three categories: High, Medium,

Low. For the sake of completeness, Undetermined is also used to cover circumstances when the risk

cannot be well determined.

Furthermore, the status of a discovered item will fall into one of the following four categories:

- Undetermined No response yet.

- Acknowledged The item has been received by the client, but not confirmed yet.

- Confirmed The item has been recognized by the client, but not fixed yet.

- Fixed The item has been confirmed and fixed by the client.

3https://owasp.org/www-community/OWASP_Risk_Rating_Methodology

4https://cwe.mitre.org/

3

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://cwe.mitre.org/

Chapter 2 Findings

In total, we find one potential issue. We also have two recommendations and one note.

- Low Risk: 1

- Recommendation: 2

- Note: 1

ID Severity Description Category Status
1 Low Potential access control problem Software Security Fixed
2 - Remove unnecessary check Recommendation Fixed
3 - Check the validity for important variables Recommendation Fixed

4 -
The minted NFT tokens are not burnt for users’
withdrawal

Note -

The details are provided in the following sections.

2.1 Software Security

2.1.1 Potential access control problem

Severity Low

Status Fixed in Version 2

Introduced by Version 1

Description In the StakefishValidatorBase contract, there is a modifier named isNFTMultiCallOrNFTOwner,

which is used to verify the caller. This modifier requires the invocation initiating from either the NFT owner,

or the NFT Multicall interface. The latter is further checked by invoking the isNFTMulticall function. How-

ever, this check (and the modifier) can be bypassed.

29 modifier isNFTMultiCallOrNFTOwner() {

30 require(getNFTOwner() == msg.sender || isNFTMulticall(), "not nft owner or multicall");

31 _;

32 }

33
34 function isNFTMulticall() internal view returns (bool) {

35 return StorageSlot.getAddressSlot(_NFT_MANAGER_SLOT).value == msg.sender && getNFTOwner()

== tx.origin;

36 }

Listing 2.1: StakefishValidatorBase.sol

Specifically, suppose there is an attacker who has deployed a malicious contract. The attacker takes

a phishing method to make the owner of a validator invoke some function of the contract, which may lead

to the following call sequence:

V alidator_owner− > malicious contract− > NFTManager− > V alidator

From the validator’s perspective, msg.sender == NFTManager, and tx.origin is the NFT owner (i.e.,

validator owner). As a result, the check in the isNFTMulticall() function can be bypassed.

4

In the current implementation, there exist two places where the isNFTMultiCallOrNFTOwner modifier

is used:

The first one is the upgradeLatestByNFTOwner function of the StakefishValidatorWallet contract.

Though the implementation cannot be controlled by the attacker (is fetched from factory contract),

an attacker can make the upgrade of a validator on behalf of the victim (by using the previously

mentioned invocation chain).

The second place is the migrate function of the StakefishValidatorWallet contract. This should

be fine since the new manager address is NOT controlled by the attacker. But again, the attacker

can migrate the NFT manager for other validators.

Since the implementation code can be upgraded, be cautious when using this modifier and tx.origin

in the future versions.

Impact May lead to unexpected results as this modifier can be bypassed.

Suggestion Revise the code.

2.2 Additional Recommendation

2.2.1 Remove unnecessary check

Status Fixed in Version 2

Introduced by Version 1

Description In the initialize function of the StakefishValidatorWallet contract, the check at line

20 is unnecessary, because there exists another check at line 24. Besides, it also means that the first

parameter factory_ is unnecessary as well as the value always comes from msg.sender.

19 function initialize(address factory_, address nftManager_) external payable {

20 require(factory_ != address(0), "factory may not be null");

21 require(nftManager_ != address(0), "manager may not be null");

22 require(StorageSlot.getAddressSlot(_NFT_MANAGER_SLOT).value == address(0), "initialized

already");

23 require(StorageSlot.getAddressSlot(_FACTORY_SLOT).value == address(0), "initialized already

");

24 require(factory_ == msg.sender, "only factory allowed to initialize.");

25
26 StorageSlot.getAddressSlot(_FACTORY_SLOT).value = factory_;

27 StorageSlot.getAddressSlot(_NFT_MANAGER_SLOT).value = nftManager_;

28 StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = IStakefishValidatorFactory(

factory_).latestVersion();

29 }

Listing 2.2: StakefishValidatorWallet.sol

Impact N/A

Suggestion Remove the redundant check.

2.2.2 Check the validity for important variables

Status Fixed in Version 2

5

Introduced by Version 1

Description The variable named protocolFee (line 32 of the StakefishValidatorFactory contract) should

not be greater than 10000 (line 98 and line 114 in the withdraw function of the StakefishValidatorV1 con-

tract). It is recommended to add the corresponding check in the setFee function.

13 contract StakefishValidatorFactory is IStakefishValidatorFactory, Ownable {

14
15 /// @dev prevent front-running - attacker creating with future tokenId and

16 /// break the functionality with the caller (NFTManager)

17 mapping(address => bool) private _approvedDeployers;

18
19 /// @dev instance of wallet contract for EIP-1167 minimal proxy cloning

20 address private _walletClonable;

21
22 /// @dev list of verified contracts

23 address[] public override implementations;

24
25 /// @dev stakefish operator

26 address public override operatorAddress;

27
28 /// @dev migration address

29 address public override migrationAddress;

30
31 /// @dev protocol fee

32 uint256 public override protocolFee = 1500;

Listing 2.3: StakefishValidatorFactory.sol

93 function withdraw() external override nonReentrant isNFTOwner {

94 uint256 availableBalance = address(this).balance;

95
96 if (withdrawnBalance >= 32 ether) {

97 // all balance need to pay stakefish commission

98 uint256 commission = (availableBalance * getProtocolFee()) / 10000;

99 uint256 userReward = availableBalance - commission;

100 withdrawnBalance += availableBalance;

101 Address.sendValue(payable(StorageSlot.getAddressSlot(_FACTORY_SLOT).value), commission)

;

102 Address.sendValue(payable(getNFTOwner()), userReward);

103 emit StakefishValidatorWithdrawn(pubkey, userReward);

104 emit StakefishValidatorCommissionTransferred(pubkey, commission);

105 } else {

106 if (withdrawnBalance + availableBalance <= 32 ether) {

107 // all balance can be withdrawn commission free

108 withdrawnBalance += availableBalance;

109 Address.sendValue(payable(getNFTOwner()), availableBalance);

110 emit StakefishValidatorWithdrawn(pubkey, availableBalance);

111 } else {

112 // a part of the balance can be withdrawn commission free

113 uint256 commissionApplyBalance = availableBalance + withdrawnBalance - 32 ether;

114 uint256 commission = (commissionApplyBalance * getProtocolFee()) / 10000;

115 uint256 userReward = availableBalance - commission;

116 withdrawnBalance += availableBalance;

6

117 Address.sendValue(payable(StorageSlot.getAddressSlot(_FACTORY_SLOT).value),

commission);

118 Address.sendValue(payable(getNFTOwner()), userReward);

119 emit StakefishValidatorWithdrawn(pubkey, userReward);

120 emit StakefishValidatorCommissionTransferred(pubkey, commission);

121 }

122 }

123 }

Listing 2.4: StakefishValidatorV1.sol

64 function setFee(uint256 _feePercent) external override onlyOwner() {

65 protocolFee = _feePercent;

66 }

Listing 2.5: StakefishValidatorFactory.sol

Impact N/A

Suggestion Add the corresponding check.

2.3 Note

2.3.1 The minted NFT tokens are not burnt for users’ withdrawal

Description The minted NFT token is not burnt when a user withdraws the ETH she deposited. For ex-

ample, the user first deposits 32 ETH and then gets a NFT token. After that, she invokes the withdraw func-

tion directly before the operator invokes the makeETH2Deposit function. As a result, the user still owns the

NFT token without staking. Note that in the claim function (implemented in test/TestV2NFTManager.sol),

the verifyAndBurn function will be invoked.

Feedback from the Project Yes, it’s intentional because we do not want to allow accidental burn and

brick the wallet contract (at least right now when ETH is not allowing withdraw yet). It’s possible in the

future we will implement a BurnContract that implements like V2NFTManager (without the minting, and

burn it there).

7

	1 Introduction
	1.1 About Target Contracts
	1.2 Disclaimer
	1.3 Procedure of Auditing
	1.3.1 Software Security
	1.3.2 DeFi Security
	1.3.3 NFT Security
	1.3.4 Additional Recommendation

	1.4 Security Model

	2 Findings
	2.1 Software Security
	2.1.1 Potential access control problem

	2.2 Additional Recommendation
	2.2.1 Remove unnecessary check
	2.2.2 Check the validity for important variables

	2.3 Note
	2.3.1 The minted NFT tokens are not burnt for users' withdrawal

		2022-11-19T15:32:30+0800
	BlockSec Audit Team

